

DQ-003-2016002

Seat No.

B. Sc. (Sem. VI) (CBCS) Examination

April - 2022

Mathematics: Paper - M - 09 (A)
(Mathematical Analysis - II & Abstract Algebra - II)
(New Course)

Faculty Code: 003 Subject Code: 2016002

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

Instructions: (1) All questions are compulsory.

- (2) Write answer of each question in your main answer sheet.
- 1 (a) Answer the following questions briefly:
 - (1) Define Open Cover.
 - (2) Define: Disconnected set.
 - (3) Determine whether the subset $\{2,7\}$ of metric space R is compact or not.
 - (4) Define compact set.
 - (b) Attempt any one out of two:

 $\mathbf{2}$

- (1) Show that subset $R \{a\}$ is not connected, where $a \in R$.
- (2) If A and B are compact sets of metric space X then prove that $A \cap B$ is also compact.
- (c) Attempt any one out of two:

3

- (1) State and prove Heine-Borel theorem.
- (2) If F is a closed subset of metric space X and K is a compact subset of X. Then prove that $F \cap K$ is also compact.
- (d) Attempt any one out of two:

5

- (1) State and prove theorem of nested intervals.
- (2) Prove that continuous image of compact set is compact.

2	(a)	Answer the following questions briefly: (1) Define Laplace transform.	4
		(2) Find $L^{-1}\left(\frac{1}{s-1}\right)$	
		(3) Find $L^{-1}\left(\frac{1}{s^2-9}\right)$	

- (4) Show that $L(1) = \frac{1}{s}$, where s > 0.
- (b) Attempt any **one** out of two: $(1) \quad \text{Find} \quad L^{-1} \left(\frac{2s+6}{s^2+4} \right)$
 - (2) Find $L\left(\frac{e^{at}-1}{a}\right)$, where a is constant.
- (c) Attempt any one out of two : $(1) \quad \text{Find Laplace transform of } e^{-2t} \sin^2 t.$
 - (2) If $L\{f(t)\} = \overline{f}(s)$ then prove that $L\{e^{at}f(t)\} = \overline{f}(s-a)$
- (d) Attempt any one out of two: $(1) \quad \text{If } f(t) = e^t, \ t \le 2$ $= 3, \ t > 2 \text{ then find } L\{f(t)\}.$
 - (2) Prove that $L^{-1}\left(\frac{s^3}{s^4 a^4}\right) = \frac{1}{2}\left(\cos at + \cosh at\right)$
- 3 (a) Answer the following questions briefly: 4
 - (1) Find $L(t \sin t)$
 - (2) Write convolution theorem.
 - (3) Find $L(t \sinh at)$
 - (4) Find $L\left(\frac{\sin t}{t}\right)$

(b) Attempt any one out of two:

 $\mathbf{2}$

(1) If $L\{f(t)\} = \overline{f}(s)$ then prove

$$L\left\{t^{n} f\left(t\right)\right\} = (-1)^{n} \frac{d^{n}}{ds^{n}} \left[\overline{f}\left(s\right)\right]$$

- (2) If $L\{f(t)\} = \overline{f}(s)$ then prove $L\{\frac{f(t)}{t}\} = \int_{s}^{\infty} \overline{f}(s) ds$.
- (c) Attempt any one out of two:

3

- (1) Prove that $L\{te^{-t}\sin t\} = \left(\frac{2(s+1)}{(s^2+2s+2)^2}\right)$
- (2) Prove that $L^{-1}\left(\log\left(\frac{s+b}{s+a}\right)\right) = \frac{e^{-at} e^{-bt}}{t}$
- (d) Attempt any one out of two:
 - (1) Prove that $L^{-1} \left\{ \frac{1}{\left(s^2 + a^2\right)^2} \right\} = \frac{1}{2a^3} \left(\sin at at \cos at \right)$
 - (2) Using convolution theorem, prove

$$L^{-1}\left\{\frac{1}{s(s^2+4)}\right\} = \frac{1}{4}(1-\cos 2t)$$

- 4 (a) Answer the following questions briefly:
 - (1) Define Ring
 - (2) Define Homomorphism of Groups
 - (3) Define Natural Mapping
 - (4) Define Kernel of homomorphism
 - (b) Attempt any one out of two:

 $\mathbf{2}$

- (1) Let $\varnothing : (G, *) \to (G', \Delta)$ is Homomorphism. If $H \le G$ then prove $\varnothing (H) \le G'$.
- (2) If $\varnothing:(G,*)\to(G',\Delta)$ is a Homomorphism. Then $\varnothing(e)=e'$ where e and e' are identity elements of G and G' respectively.

(c) Attempt any one out of two:

3

- (1) Prove that a cyclic group of order eight is homomorphism to a cyclic group of order four.
- (2) If G is a cyclic group of prime order then prove that a homomorphism. $\emptyset:G \to G$ is either an isomorphism or

 $\varnothing: G \to G$ is either an isomorphism or $\varnothing(a) = e$; $\forall a \in G$

(d) Attempt any one out of two:

5

- (1) State and prove first fundamental theorem of homomorphism.
- (2) Prove that A homomorphism $\varnothing:(G,*)\to(G',\Delta)$ is one-of iff $k_\varnothing=\{e\}$.
- **5** (a) Answer the following questions briefly:

4

- (1) Define constant polynomial.
- (2) If polynomial $f = \{0, 3, 2, 7, 0, 0, 0, 0, \dots \}$ then find order of f.
- (3) Define Linear polynomial.
- (4) Define Monic polynomial.

Attempt any one out of two:

- 2
- (1) Find conjugate of quaternion 1-3i+2j-k.
- (2) If $f(x) = (1, 3, 2, 2, 0, 0, \dots)$ and $g(x) = (2, 2, 0, 0, 3, 0, \dots) \in R[x]$ then find f(x) + g(x).
- (c) Attempt any one out of two:

3

- (1) State and prove Remainder theorem of polynomails.
- (2) Find g.c.d. of $f(x) = 6x^3 + 5x^2 2x + 25$ and $g(x) = 2x^2 3x + 5 \in R[X]$ and express it in the form a(x) f(x) + b(x) g(x).
- (d) Attempt any one out of two:

5

- (1) State and prove division algorithm for polynomials.
- (2) Prove that any ideal in integration domain F[X] is a principal ideal.